
 

 
266 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025 

Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025 

Available at www.rjetm.in/ 

A Comprehensive Review on Mango Leaf Disease Recognition Using 

Deep Neural Networks 
1Prahlad Kumar, 2Dr. Gagan Sharma 

1M.Tech Scholar, 2Associate Professor,  
1Department of Computer Science and Engineering, Sri Satya Sai College of Engineering, Bhopal (M.P) 
2Department of Computer Science and Engineering, Sri Satya Sai College of Engineering, Bhopal (M.P) 

Email-: 1prahlad12351@gmail.com, 2gagansharma.cs@gmail.com  
 

* Corresponding Author: Prahlad Kumar             

 

Abstract:  

Mango (Mangifera indica.) is a significant fruit crop widely cultivated, whose production, however, is in a way terribly 

affected by foliar diseases of anthracnose, powdery mildew, and bacterial leaf spot. Early recognition of a disease is very 

important for its management and for sustaining crop yield. Traditional methods mainly relied on spotting for the 

diseases. This kind of method is then tiresome and time-consuming and hence sometimes inaccurate. In recent years, the 

development of machine learning and artificial intelligence has made possible supplemental means of disease 

recognition. Deep Neural Networks (DNN) and Support Vector Machines (SVM) stand out as the two competing 

paradigms for the classification purpose. DNNs provide powerful feature extraction and classification capabilities that 

enable the network to model the complex and non-linear disease patterns with a high degree of accuracy. SVMs, on the 

other hand, continue to yield robust performance with small and high-dimensional datasets, especially in classification 

problems where the availability of data points is limited. This review provides a cohesive review of mango leaf disease 

recognition using deep neural networks and SVMs, along with their methods, performances, strengths, and weaknesses. 

The review also gives a brief description of major challenges such as dataset scarcity, variation of disease symptoms, and 

computational requirements. In conclusion, the review focuses on future directions involving hybrid paradigms, data 

augmentation techniques, and real-time implementations in order to aid precision agriculture and improve mango 

production. 

Keywords: Mango leaf disease, Deep neural networks, Support vector machine, Image classification, Machine learning, 
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I. INTRODUCTION 

Mangifera indica is a species of paramount economic and cultural importance in the tropical and subtropical climes and 

is hence acknowledged by many as the “king of fruits.” It is cultivated extensively in India, China, Thailand, and 

elsewhere, where it contributes significantly to agricultural GDP and trade. But mango productivity is highly affected by 

foliar diseases like anthracnose, powdery mildew, and bacterial leaf spot, which reduce not just the yield but also the 

quality of the fruits, which in turn leads to heavy postharvest losses[1, 2]. Methods of diagnosis and control of these 

diseases have mostly depended on the human eye of farmers and agricultural experts to visually inspect them. Of course, 

they work best on a small scale, yet the problem is that such methods are subjective at times, slow, and prone to error 

arising from discrepancies in disease symptoms, in environmental factors, and even in human perception and 

expertise[3]. These existing shortcomings confirm the increased requirement for automated, objective, and scalable 

disease recognition systems. 

 

Recent computer vision and AI-based researches in agriculture would provide a new angle for the detection of crop 

diseases. Thanks to imaging devices and computational power, one can electronically capture plant leaves and analyze 

them for symptoms of diseases. Earlier methods in this area predominantly relied on hand-crafted features based on 

texture descriptors, color histograms, and shape analyzers, followed by classical classifiers [4]. Though these approaches 

gave moderately satisfactory results for detection, their performance was comparatively low owing to additional 

inconsistencies in the environment and symptom diversity [5]. Plant disease detection was made possible by neural 

networks through end-to-end feature learning. Neural networks draw inspiration from biological neurons and are capable 

of modeling nonlinear relationships in data, thus offering a better classification system. Specifically, deep neural 

networks have been found to be very successful in analyzing images, automatically extracting hierarchical features across 

layers [6]. Thus, in the case of the recognition of mango leaf diseases, where lesion size, shape, and intensity vary in 

complex ways, DNNs stand far better than conventional methods.  

 

Studies on the applications of deep learning to mango leaf disease datasets have reported truly impressive performance, 

achieving an accuracy rate of more than 95% in some classification tasks [7]. Unlike hand-designed methods, DNNs 

learn general features rather than restricted ones, which enhances the robustness of the system against noise and 

variability in input data. Their power is countered by issues like a lack of labeled data, computational intensity, and 

potential overfitting problems faced in small-scale agricultural studies [8]. Equivalent to neural networks, support vector 
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machines are commonly used in plant disease recognition. SVMs perform extremely well with small datasets, large 

feature spaces, and binary classification [9]. They consume less in terms of resources than DNNs while offering 

comparable accuracy; thus, they fit well within resource-poor agricultural setups. 

 

This review paper serves to synthesize research already done on the mango leaf disease recognition using neural 

networks-the focus being on deep architectures, with a consideration of SVMs as alternatives or partnering solutions. The 

paper brings forth the methodological approach, comparative performance, challenges, and future opportunities of this 

area. It thus intends to add to the well-established literature on precision agriculture for sustainability practices in the 

world over mango cultivation. Table 1.s common mango leaf disease 

Table 1: Common Mango Leaf Diseases 

Disease Name Causal Agent Category Image 

Anthracnose Colletotrichum gloeosporioides Fungal 

 

Powdery Mildew Oidium mangiferae Fungal 

 

Bacterial Canker Xanthomonas campestris Bacterial 

 

Leaf Spot Cercospora mangiferae Fungal 

 

Alternaria Leaf Blight Alternaria alternata Fungal 

 

Rust Ravenelia indica Fungal 

 

Algal Leaf Spot Cephaleuros virescens Algal 

 

Phoma Leaf Spot Phoma spp. Fungal 

 

Verticillium Wilt Verticillium dahliae Fungal 
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Leaf Gall Procontarinia matteiana (mite) Parasitic/Mite 

 

 

 

II. IMAGE PREPROCESSING TECHNIQUES 
 

Image preprocessing enhances raw mango leaf images by improving quality, removing distortions, and standardizing 

features for accurate disease recognition and classification 

 

Image Resizing and Normalization: - Resizing is the process of making all the input images into the same dimensions 

to fit various sizes of neural network. Normalization is converting the pixel intensity values like 0 to 1 to improve the 

render on less contrast and brightness [10]. This way the lighting change and contrast are minimized thus making the 

computational load on the system light and ensuring more stable training. Once these are done, the input data will be 

reduced to the same range which in turn boosts the prediction quality as well as the learning speed in disease 

classificaiton using a machine learning model [11]. 

 

Noise Removal and Filtering: - In leaf images, a problem such as noise can often manifest as a result of numerous 

features. This can also come about due to the quality of the camera in use, or the occurrence of transmission errors [12]. 

In an effort to smoothen the excessively rugged images, filters become very useful and are applied namely gaussian, 

median as well as bilateral ones. They can also help in the elimination of unnecessary objects that may not look good. In 

very severe cases, the removal of noise is actually paramount considering the presence of disease [13]. 

  

Color Space Transformation (RGB, HSV, and Grayscale):- Color space transformation converts leaf images into 

alternative representations to highlight disease symptoms effectively. RGB provides raw color details, HSV separates 

color information from intensity, and grayscale reduces complexity by focusing on structural features. Using multiple 

color spaces enables accurate detection of discolored regions, spots, and fungal growth [14]. This transformation 

enhances feature extraction, improving disease identification accuracy across diverse image datasets. 

 

Image Augmentation for Improved Generalization: - Augmentation applies a variety of texture smoothening, noise 

reduction, histogram equalization and contrast stretching techniques to the image [15]. As a result, models are less 

precise and their poor generalization occurs. In practice, they make such things as leaf disease recognition more realistic 

and heighten illumination, distortion, and leaf arrangement variability leading to better classification model performance. 

Consequently, it is also considered an important factor for achieving sophisticated deep learning networks [16]. 

III. DEEP LEARNING FOR ENHANCED CLASSIFICATION PERFORMANCE 

In the recent years, deep learning has become the primary paradigm used in solving mango leaf disease identification 

problems, with several studies developing novel architectures and comparing them with conventional ones. One of these 

was a custom-design CNN for mango leaf disease detection attaining an accuracy of 97.2%, thus outperforming the 

ResNet- and VGG-based baselines. Despite the good performance, the lack of fine-grained class-wise metrics and the 

regional nature of the dataset posed challenges towards making any generalized conclusions regarding the outcome of 

this study  [17]. 

Further research concerning transfer learning was conducted regarding comparisons of CNN architectures and Vision 

Transformers upon MangoLeafBD. Depending on the augmentation strategy, accuracies varying from 88% to 96% were 

reported. It was that the models were not sufficiently robust to real-world variability because of overfitting on field data 

[18]. Further developments on this front included improvements in the CNN pipeline wherein color normalization and 

wide augmentation were used to drive accuracy to 98.55%. Provided it is a highly accurate pipeline, this, however, 

brought into question the matter of its deployment in resource-limited agricultural setups [19]. 

Other studies in this area experimented with various forms of ResNet and produced method results from 80% to 92% 

accuracy. Results highlighted the problem of imbalanced data since some minority classes were not well recognized and 

poorly remembered. However, the absence of AUC analysis did not allow for a more holistic evaluation [20]. In the same 

vein, in-region mango datasets also achieved 81.8% in accuracy by means of transfer learning with ResNet50, yet it did 

not include detailed per-class evaluation metrics, thus leaving the interpretation of robustness somewhat inconclusive 

[21]. 
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In the attempts to enhance the CNN pipeline through augmentations and backbone adjustments, accuracies ranging 

between 87% and 91% were achieved, yet these approaches were plagued by the limitations of their datasets and lack of 

external validations [22]. Ensemble models that combined several CNNs have been proposed as well and achieved 

accuracies of up to 98.57%. Unfortunately, the increased model complexity and computational requirements offered 

barriers to real-time and on-device deployment [23]. 

The survey-based work unified the scope of CNN and has been geared towards mango leaf disease detection, with 

accuracies ranging between 80% and 98%. These reviews considered augmentation methods and lightweight 

architectures of importance but were short on any concrete empirical contribution [24]. Nearly 98% accuracy was 

achieved via the transfer learning approach utilizing DenseNet201 and InceptionResNetV2 as backbones with the 

datasets still being on the smaller side and lacking detailed considerations of augmentation strategies [25]. Hybrid CNN-

based systems were also promising by still achieving in the region of 93% accuracy for multi-class disease classification, 

but they tend to hide class-specific evaluative details and are complicated [26]. Segment-wise pipelines reported better 

accuracies than single-stage classifiers, with two-stage models going above 90% accuracy. The increased cost for pixel-

level labeling and segmentation, though, put a strain on its scalability [27]. Lightweight methods such as MobileNetV3 

can attain accuracies up to 98% under controlled settings, but due to domain shifts in field images, model robustness is 

yet to be achieved [28]. With the inception of the MangoLeafBD dataset containing 4,000 images of seven disease 

classes, a good benchmark was created for CNN evaluation. However, due to its regional bias, the dataset failed to 

generalize to other environments [29]. Further evaluations on CNN backbones including VGG, ResNet, MobileNet, and 

EfficientNet showed accuracies as high as 98%, but the difference in how dataset splits were carried out in various 

studies made direct comparison difficult [30]. 

In the case of plant disease recognition beyond the domain of mango, experimental results do indicate the dominance of 

deep CNNs and big transformer-based architectures over simpler and smaller architectures. For instance, EfficientNet 

and hybrid CNN-transformer are reported to yield accuracies exceeding 97% on diverse datasets, but at the cost of more 

complexity and dependence on curated datasets [31]–[33]. These findings appear to indicate a tug between accuracy and 

real-world deployability. Overall, the literature illustrates steady progress in applying neural networks to mango leaf 

disease detection. However, challenges remain, including dataset scarcity, lack of external validation, computational 

overheads, and insufficient reporting of per-class metrics. The next phase of research is expected to emphasize 

lightweight, robust models that can operate effectively in field conditions while maintaining high performance across 

diverse disease categories. 

Recent advances in plant disease recognition have seen significant integration of deep neural networks, mostly to 

enhance accuracy and robustness on different crop datasets. For instance, [34] propose an improved EfficientNet for corn 

leaf disease recognition via transfer learning, yielding 98.50% accuracy rates on test sets. The authors stressed fine-

tuning and data augmentation for enhancement of generalization, while also enumerating some drawbacks of having 

curated test sets and the absence of cross-site evaluation. 

 

In one article, [35] laid down a deviation network for recognizing maize leaf diseases by taking in residual blocks and 

attention modules. Despite its 92.6 percent precision, the increase in model size above the conventional input dimension 

raised the storage requirements and consequently limited practicability. Similarly, [36]–[43] used spatial attention-guided 

pre-trained networks to achieve 97.53% and 94.65% accuracy for maize and coffee leaf diseases, respectively. While 

outperforming conventional classifiers, the study argued that an excessive number of epochs and additional backbones 

might come with low-priority constraints. 

 

The study in [44] conducted a comparative evaluation of the maize leaf disease-detection systems using ResNet and 

EfficientNet. They reported accuracies of 94.67% for the former, and 92.91% for the latter, although per-class recall and 

AUC were rarely presented. In another study, EfficientNet was employed to identify the multi-class diseases under lab 

conditions with up to 95% accuracy during validation, while close-related diseases were recalled accurately; however, it 

was not formally published in peer-reviewed venues [45]. 

 

Building on hybrid methods, [46] added transformer modules into ResNet, obtaining accuracies of 92% to 95% on maize 

datasets. ResNet designs fared better than transformer-enhanced designs, however, the issue of generalization across a 

variety of crop types still remained. Similarly, [47] showed superior performance after fine-tuning EfficientNet and 

ResNet, reaching 97.13% accuracy on an external dataset.  

 

Table 2: Based on Deep Learning Techniques 

Ref Dataset Used Technique Used Key Findings Results Limitations 

[10] Custom mango 

dataset 

Custom CNN (LeafNet) vs 

ResNet, VGG 

LeafNet 

outperformed 

baselines 

Accuracy 

97.2%, 

improved F1 

No class-wise 

metrics; regional 

dataset 
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overall 

[11] MangoLeafBD Transfer learning (ResNet, 

EfficientNet) vs ViT 

CNNs more stable 

than ViTs 

Accuracy 88–

96% 

Overfitting on field 

data 

[12] Field mango 

images 

CNN + color normalization + 

augmentation 

Preprocessing 

boosted strength 

Accuracy up to 

98.55%, higher 

precision 

Heavy compute; not 

mobile-friendly 

[13] Regional mango 

dataset 

ResNet variants Good 

classification, 

some class errors 

Accuracy 80–

92% 

Low recall for 

minority classes 

[14] South Indian 

mango dataset 

ResNet50 transfer learning Robust training Accuracy 

81.8%; val loss 

~0.45 

Missing per-class 

metrics 

[15] Regional mango 

dataset 

CNNs + augmentation Preprocessing 

boosted accuracy 

Accuracy 87–

91% 

Limited external 

validation 

[16] Mango dataset Ensemble CNN Outperformed 

individual models 

Accuracy 

98.57% 

High compute; not 

edge-deployable 

[17] Multiple studies Literature survey Wide accuracy 

range 

80–98% across 

studies 

No new 

experiments 

[18] ~1,000 mango 

images 

DenseNet201, 

InceptionResNetV2 

DenseNet201 best 

performer 

Accuracy 98% Small dataset 

[19] 4,873 mango 

images 

Hybrid CNN model Effective for 8 

classes 

Accuracy 

93.01% 

Complex; no class-

wise metrics 

[20] Mango dataset Segmentation + ResNet Improved AUC & 

accuracy 

Accuracy 90% Pixel-level labels 

required 

[21] MangoLeafBD MobileNetV3 Mobile-ready 

detection 

Accuracy 98% Field adaptation 

weak 

[22] MangoLeafBD 

(4,000 images) 

Dataset creation Benchmark dataset Widely used Geographically 

biased 

[23] Multiple mango 

datasets 

CNN comparisons Varied 

performance across 

backbones 

Accuracy 82–

98%, F1: 0.75–

0.98 

Different splits 

reduce 

comparability 

[24] PlantVillage + 

others 

CNN, ResNet, Transformer Dense CNNs 

strongest 

Accuracy 95% Not mango-specific 

[25] APV, 

PlantVillage 

EfficientNet-B0 fine-tuned State-of-the-art 

accuracy + low 

compute 

Accuracy 

99.69% (APV), 

99.78% (PV) 

Curated datasets 

only 

[26] Maize dataset EfficientNet transfer High efficiency, 

high accuracy 

Accuracy high-

90s 

Controlled images 

only 

[27] Maize dataset ResNet-based pipeline Accurate maize 

detection 

Accuracy 

≈97.2% 

Manual 

preprocessing 

required 

[28] Mixed crop 

datasets 

EfficientRMT-Net 

(ResNet50+Transformer) 

Hybrid 

outperformed 

baselines 

Accuracy 

≈97.09% 

Complex; no edge 

runtime metrics 

[29] Plant leaf dataset ResNet-50 (ROCNN) High precision; 

recall tradeoffs 

High F-

measure, recall 

varied 

Synthetic denoising 

may not generalize 
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IV. COMPARATIVE PERFORMANCE FOR MANGO LEAFE DISEASE  

 
 

Figure 1: COMPARATIVE PERFORMANCE FOR MANGO LEAFE DISEASE [10],[11],[12],[16],[18],[25] 

 

The comparative performance chart for mango leaf disease recognition marks the accuracies achieved by different 

techniques. The Custom CNN, named LeafNet, achieved 97.2%, indicating better results than the traditional 

architectures. On the other hand, the transfer learning of the ResNet variants attained 96%, meaning good generalization 

but a bit less stability. A CNN with color normalization and augmentation gave an accuracy of 98.5%, which points to 

the importance of preprocessing. The ensemble of CNNs further augmented this to 98.57%, thus leveraging the best traits 

of the models. DenseNet201 with InceptionResNetV2 achieved 98%, indicating high enabling power on reduced 

datasets. The analysis ends with the best performance from efficient utilization of EfficientNet-B0 fine-tuned at 99.69%, 

which also indicates the highest possible accuracy but needs curated datasets. 

 

V. CONCLUSION AND FUTURE WORK   

 

In this review, various works on mango leaf disease detection were examined, and from these studies, the highest 

accuracy achieved was 99.69% using a fine-tuned EfficientNet-B0 model on curated datasets. This demonstrates the 

potential of deep neural networks in learning complex and non-linear features for robust classification. This depicts the 

power of deep neural networks in modeling complex and non-linear features for robust classification. Other methods, 

such as ensemble CNNs and other pipelines with some form of preprocessing such as color normalization, have reported 

accuracies higher than 98%, thus suggesting that architecture and data augmentation play an important role in 

performance. Support vector machines, while showing less prowess than deep networks, have obtained competitive 

results with small, high-dimensional data sets, thus emphasizing their use when labeled training data and computational 

resources are scarce. Despite all these promising results, several challenges exist. Most models were validated in region-

specific or handcrafted datasets, diminishing their generalizability to actual field conditions where noises, variations, and 

occlusions exist. Other limitations include class imbalances, absence of per-class performance metrics, and 

computational overheads that preclude wide deployment. Lightweight architectures, including MobileNetV3, would have 

given promising mobile-ready detections but showed poor robustness under domain shifts in field images. Comparative 

findings overall indicate that deep neural networks stand out with better accuracy and adaptability in comparison to 

traditional methods, yet pragmatic deployment calls for a scrutiny into the scarcer datasets, interpretability of models, and 

scalability. Future undertakings should stress a possible hybrid model, cross-site validation, and the constitution of 

heterogeneous benchmark dataset to ensure field-level systems. Such a balance would consolidate precision agriculture 

towards the sustainable cultivation of mangoes and a firm grip on their diseases. 
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