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Abstract:

Mango (Mangifera indica.) is a significant fruit crop widely cultivated, whose production, however, is in a way terribly
affected by foliar diseases of anthracnose, powdery mildew, and bacterial leaf spot. Early recognition of a disease is very
important for its management and for sustaining crop yield. Traditional methods mainly relied on spotting for the
diseases. This kind of method is then tiresome and time-consuming and hence sometimes inaccurate. In recent years, the
development of machine learning and artificial intelligence has made possible supplemental means of disease
recognition. Deep Neural Networks (DNN) and Support Vector Machines (SVM) stand out as the two competing
paradigms for the classification purpose. DNNs provide powerful feature extraction and classification capabilities that
enable the network to model the complex and non-linear disease patterns with a high degree of accuracy. SVMs, on the
other hand, continue to yield robust performance with small and high-dimensional datasets, especially in classification
problems where the availability of data points is limited. This review provides a cohesive review of mango leaf disease
recognition using deep neural networks and SVMs, along with their methods, performances, strengths, and weaknesses.
The review also gives a brief description of major challenges such as dataset scarcity, variation of disease symptoms, and
computational requirements. In conclusion, the review focuses on future directions involving hybrid paradigms, data
augmentation techniques, and real-time implementations in order to aid precision agriculture and improve mango
production.

Keywords: Mango leaf disease, Deep neural networks, Support vector machine, Image classification, Machine learning,
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1. INTRODUCTION

Mangifera indica is a species of paramount economic and cultural importance in the tropical and subtropical climes and
is hence acknowledged by many as the “king of fruits.” It is cultivated extensively in India, China, Thailand, and
elsewhere, where it contributes significantly to agricultural GDP and trade. But mango productivity is highly affected by
foliar diseases like anthracnose, powdery mildew, and bacterial leaf spot, which reduce not just the yield but also the
quality of the fruits, which in turn leads to heavy postharvest losses[1, 2]. Methods of diagnosis and control of these
diseases have mostly depended on the human eye of farmers and agricultural experts to visually inspect them. Of course,
they work best on a small scale, yet the problem is that such methods are subjective at times, slow, and prone to error
arising from discrepancies in disease symptoms, in environmental factors, and even in human perception and
expertise[3]. These existing shortcomings confirm the increased requirement for automated, objective, and scalable
disease recognition systems.

Recent computer vision and Al-based researches in agriculture would provide a new angle for the detection of crop
diseases. Thanks to imaging devices and computational power, one can electronically capture plant leaves and analyze
them for symptoms of diseases. Earlier methods in this area predominantly relied on hand-crafted features based on
texture descriptors, color histograms, and shape analyzers, followed by classical classifiers [4]. Though these approaches
gave moderately satisfactory results for detection, their performance was comparatively low owing to additional
inconsistencies in the environment and symptom diversity [5]. Plant disease detection was made possible by neural
networks through end-to-end feature learning. Neural networks draw inspiration from biological neurons and are capable
of modeling nonlinear relationships in data, thus offering a better classification system. Specifically, deep neural
networks have been found to be very successful in analyzing images, automatically extracting hierarchical features across
layers [6]. Thus, in the case of the recognition of mango leaf diseases, where lesion size, shape, and intensity vary in
complex ways, DNNs stand far better than conventional methods.

Studies on the applications of deep learning to mango leaf disease datasets have reported truly impressive performance,
achieving an accuracy rate of more than 95% in some classification tasks [7]. Unlike hand-designed methods, DNNs
learn general features rather than restricted ones, which enhances the robustness of the system against noise and
variability in input data. Their power is countered by issues like a lack of labeled data, computational intensity, and
potential overfitting problems faced in small-scale agricultural studies [8]. Equivalent to neural networks, support vector
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machines are commonly used in plant disease recognition. SVMs perform extremely well with small datasets, large
feature spaces, and binary classification [9]. They consume less in terms of resources than DNNs while offering
comparable accuracy; thus, they fit well within resource-poor agricultural setups.

This review paper serves to synthesize research already done on the mango leaf disease recognition using neural
networks-the focus being on deep architectures, with a consideration of SVMs as alternatives or partnering solutions. The
paper brings forth the methodological approach, comparative performance, challenges, and future opportunities of this
area. It thus intends to add to the well-established literature on precision agriculture for sustainability practices in the
world over mango cultivation. Table 1.s common mango leaf disease

Table 1: Common Mango Leaf Diseases

Disease Name Causal Agent Category Image
Anthracnose Colletotrichum gloeosporioides | Fungal e
Powdery Mildew Oidium mangiferae Fungal

Bacterial Canker Xanthomonas campestris Bacterial

Leaf Spot Cercospora mangiferae Fungal

Alternaria Leaf Blight | Alternaria alternata Fungal

Rust Ravenelia indica Fungal

Algal Leaf Spot Cephaleuros virescens Algal

Phoma Leaf Spot Phoma spp. Fungal

Verticillium Wilt Verticillium dahliae Fungal
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Leaf Gall Procontarinia matteiana (mite) | Parasitic/Mite

1. IMAGE PREPROCESSING TECHNIQUES

Image preprocessing enhances raw mango leaf images by improving quality, removing distortions, and standardizing
features for accurate disease recognition and classification

Image Resizing and Normalization: - Resizing is the process of making all the input images into the same dimensions
to fit various sizes of neural network. Normalization is converting the pixel intensity values like 0 to 1 to improve the
render on less contrast and brightness [10]. This way the lighting change and contrast are minimized thus making the
computational load on the system light and ensuring more stable training. Once these are done, the input data will be
reduced to the same range which in turn boosts the prediction quality as well as the learning speed in disease
classificaiton using a machine learning model [11].

Noise Removal and Filtering: - In leaf images, a problem such as noise can often manifest as a result of numerous
features. This can also come about due to the quality of the camera in use, or the occurrence of transmission errors [12].
In an effort to smoothen the excessively rugged images, filters become very useful and are applied namely gaussian,
median as well as bilateral ones. They can also help in the elimination of unnecessary objects that may not look good. In
very severe cases, the removal of noise is actually paramount considering the presence of disease [13].

Color Space Transformation (RGB, HSV, and Grayscale):- Color space transformation converts leaf images into
alternative representations to highlight disease symptoms effectively. RGB provides raw color details, HSV separates
color information from intensity, and grayscale reduces complexity by focusing on structural features. Using multiple
color spaces enables accurate detection of discolored regions, spots, and fungal growth [14]. This transformation
enhances feature extraction, improving disease identification accuracy across diverse image datasets.

Image Augmentation for Improved Generalization: - Augmentation applies a variety of texture smoothening, noise
reduction, histogram equalization and contrast stretching techniques to the image [15]. As a result, models are less
precise and their poor generalization occurs. In practice, they make such things as leaf disease recognition more realistic
and heighten illumination, distortion, and leaf arrangement variability leading to better classification model performance.
Consequently, it is also considered an important factor for achieving sophisticated deep learning networks [16].

I111. DEEP LEARNING FOR ENHANCED CLASSIFICATION PERFORMANCE

In the recent years, deep learning has become the primary paradigm used in solving mango leaf disease identification
problems, with several studies developing novel architectures and comparing them with conventional ones. One of these
was a custom-design CNN for mango leaf disease detection attaining an accuracy of 97.2%, thus outperforming the
ResNet- and VGG-based baselines. Despite the good performance, the lack of fine-grained class-wise metrics and the
regional nature of the dataset posed challenges towards making any generalized conclusions regarding the outcome of
this study [17].

Further research concerning transfer learning was conducted regarding comparisons of CNN architectures and Vision
Transformers upon MangoLeafBD. Depending on the augmentation strategy, accuracies varying from 88% to 96% were
reported. It was that the models were not sufficiently robust to real-world variability because of overfitting on field data
[18]. Further developments on this front included improvements in the CNN pipeline wherein color normalization and
wide augmentation were used to drive accuracy to 98.55%. Provided it is a highly accurate pipeline, this, however,
brought into question the matter of its deployment in resource-limited agricultural setups [19].

Other studies in this area experimented with various forms of ResNet and produced method results from 80% to 92%
accuracy. Results highlighted the problem of imbalanced data since some minority classes were not well recognized and
poorly remembered. However, the absence of AUC analysis did not allow for a more holistic evaluation [20]. In the same
vein, in-region mango datasets also achieved 81.8% in accuracy by means of transfer learning with ResNet50, yet it did
not include detailed per-class evaluation metrics, thus leaving the interpretation of robustness somewhat inconclusive
[21].
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In the attempts to enhance the CNN pipeline through augmentations and backbone adjustments, accuracies ranging
between 87% and 91% were achieved, yet these approaches were plagued by the limitations of their datasets and lack of
external validations [22]. Ensemble models that combined several CNNs have been proposed as well and achieved
accuracies of up to 98.57%. Unfortunately, the increased model complexity and computational requirements offered
barriers to real-time and on-device deployment [23].

The survey-based work unified the scope of CNN and has been geared towards mango leaf disease detection, with
accuracies ranging between 80% and 98%. These reviews considered augmentation methods and lightweight
architectures of importance but were short on any concrete empirical contribution [24]. Nearly 98% accuracy was
achieved via the transfer learning approach utilizing DenseNet201 and InceptionResNetV2 as backbones with the
datasets still being on the smaller side and lacking detailed considerations of augmentation strategies [25]. Hybrid CNN-
based systems were also promising by still achieving in the region of 93% accuracy for multi-class disease classification,
but they tend to hide class-specific evaluative details and are complicated [26]. Segment-wise pipelines reported better
accuracies than single-stage classifiers, with two-stage models going above 90% accuracy. The increased cost for pixel-
level labeling and segmentation, though, put a strain on its scalability [27]. Lightweight methods such as MobileNetV3
can attain accuracies up to 98% under controlled settings, but due to domain shifts in field images, model robustness is
yet to be achieved [28]. With the inception of the MangoLeafBD dataset containing 4,000 images of seven disease
classes, a good benchmark was created for CNN evaluation. However, due to its regional bias, the dataset failed to
generalize to other environments [29]. Further evaluations on CNN backbones including VGG, ResNet, MobileNet, and
EfficientNet showed accuracies as high as 98%, but the difference in how dataset splits were carried out in various
studies made direct comparison difficult [30].

In the case of plant disease recognition beyond the domain of mango, experimental results do indicate the dominance of
deep CNNs and big transformer-based architectures over simpler and smaller architectures. For instance, EfficientNet
and hybrid CNN-transformer are reported to yield accuracies exceeding 97% on diverse datasets, but at the cost of more
complexity and dependence on curated datasets [31]-[33]. These findings appear to indicate a tug between accuracy and
real-world deployability. Overall, the literature illustrates steady progress in applying neural networks to mango leaf
disease detection. However, challenges remain, including dataset scarcity, lack of external validation, computational
overheads, and insufficient reporting of per-class metrics. The next phase of research is expected to emphasize
lightweight, robust models that can operate effectively in field conditions while maintaining high performance across
diverse disease categories.

Recent advances in plant disease recognition have seen significant integration of deep neural networks, mostly to
enhance accuracy and robustness on different crop datasets. For instance, [34] propose an improved EfficientNet for corn
leaf disease recognition via transfer learning, yielding 98.50% accuracy rates on test sets. The authors stressed fine-
tuning and data augmentation for enhancement of generalization, while also enumerating some drawbacks of having
curated test sets and the absence of cross-site evaluation.

In one article, [35] laid down a deviation network for recognizing maize leaf diseases by taking in residual blocks and
attention modules. Despite its 92.6 percent precision, the increase in model size above the conventional input dimension
raised the storage requirements and consequently limited practicability. Similarly, [36]-[43] used spatial attention-guided
pre-trained networks to achieve 97.53% and 94.65% accuracy for maize and coffee leaf diseases, respectively. While
outperforming conventional classifiers, the study argued that an excessive number of epochs and additional backbones
might come with low-priority constraints.

The study in [44] conducted a comparative evaluation of the maize leaf disease-detection systems using ResNet and
EfficientNet. They reported accuracies of 94.67% for the former, and 92.91% for the latter, although per-class recall and
AUC were rarely presented. In another study, EfficientNet was employed to identify the multi-class diseases under lab
conditions with up to 95% accuracy during validation, while close-related diseases were recalled accurately; however, it
was not formally published in peer-reviewed venues [45].

Building on hybrid methods, [46] added transformer modules into ResNet, obtaining accuracies of 92% to 95% on maize
datasets. ResNet designs fared better than transformer-enhanced designs, however, the issue of generalization across a
variety of crop types still remained. Similarly, [47] showed superior performance after fine-tuning EfficientNet and
ResNet, reaching 97.13% accuracy on an external dataset.

Table 2: Based on Deep Learning Techniques

Ref Dataset Used Technique Used Key Findings Results Limitations
[10] | Custom mango Custom CNN (LeafNet) vs LeafNet Accuracy No class-wise
dataset ResNet, VGG outperformed 97.2%, metrics; regional
baselines improved F1 dataset
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overall
[11] | MangoLeafBD Transfer learning (ResNet, CNNs more stable | Accuracy 88— Overfitting on field
EfficientNet) vs ViT than ViTs 96% data
[12] | Field mango CNN + color normalization + | Preprocessing Accuracy up to | Heavy compute; not
images augmentation boosted strength 98.55%, higher | mobile-friendly
precision
[13] | Regional mango ResNet variants Good Accuracy 80— Low recall for
dataset classification, 92% minority classes
some class errors
[14] | South Indian ResNet50 transfer learning Robust training Accuracy Missing per-class
mango dataset 81.8%; val loss | metrics
~0.45
[15] | Regional mango CNNs + augmentation Preprocessing Accuracy 87— Limited external
dataset boosted accuracy 91% validation
[16] | Mango dataset Ensemble CNN Outperformed Accuracy High compute; not
individual models | 98.57% edge-deployable
[17] | Multiple studies Literature survey Wide accuracy 80-98% across | No new
range studies experiments
[18] | ~1,000 mango DenseNet201, DenseNet201 best | Accuracy 98% | Small dataset
images InceptionResNetV?2 performer
[19] | 4,873 mango Hybrid CNN model Effective for 8 Accuracy Complex; no class-
images classes 93.01% wise metrics
[20] | Mango dataset Segmentation + ResNet Improved AUC & | Accuracy 90% | Pixel-level labels
accuracy required
[21] | MangoLeafBD MobileNetV3 Mobile-ready Accuracy 98% | Field adaptation
detection weak
[22] | MangoLeafBD Dataset creation Benchmark dataset | Widely used Geographically
(4,000 images) biased
[23] | Multiple mango CNN comparisons Varied Accuracy 82— Different splits
datasets performance across | 98%, F1: 0.75— | reduce
backbones 0.98 comparability
[24] | PlantVillage + CNN, ResNet, Transformer Dense CNNs Accuracy 95% | Not mango-specific
others strongest
[25] | APV, EfficientNet-BO0 fine-tuned State-of-the-art Accuracy Curated datasets
PlantVillage accuracy + low 99.69% (APV), | only
compute 99.78% (PV)
[26] | Maize dataset EfficientNet transfer High efficiency, Accuracy high- | Controlled images
high accuracy 90s only
[27] | Maize dataset ResNet-based pipeline Accurate maize Accuracy Manual
detection ~97.2% preprocessing
required
[28] | Mixed crop EfficientRMT-Net Hybrid Accuracy Complex; no edge
datasets (ResNet50+Transformer) outperformed ~97.09% runtime metrics
baselines
[29] | Plant leaf dataset | ResNet-50 (ROCNN) High precision; High F- Synthetic denoising

recall tradeoffs

measure, recall
varied

may not generalize
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1IV. COMPARATIVE PERFORMANCE FOR MANGO LEAFE DISEASE
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Figure 1: COMPARATIVE PERFORMANCE FOR MANGO LEAFE DISEASE [10],[11],[12],[16],[18],[25]

The comparative performance chart for mango leaf disease recognition marks the accuracies achieved by different
techniques. The Custom CNN, named LeafNet, achieved 97.2%, indicating better results than the traditional
architectures. On the other hand, the transfer learning of the ResNet variants attained 96%, meaning good generalization
but a bit less stability. A CNN with color normalization and augmentation gave an accuracy of 98.5%, which points to
the importance of preprocessing. The ensemble of CNNs further augmented this to 98.57%, thus leveraging the best traits
of the models. DenseNet201 with InceptionResNetV2 achieved 98%, indicating high enabling power on reduced
datasets. The analysis ends with the best performance from efficient utilization of EfficientNet-B0 fine-tuned at 99.69%,
which also indicates the highest possible accuracy but needs curated datasets.

V. CONCLUSION AND FUTURE WORK

In this review, various works on mango leaf disease detection were examined, and from these studies, the highest
accuracy achieved was 99.69% using a fine-tuned EfficientNet-BO model on curated datasets. This demonstrates the
potential of deep neural networks in learning complex and non-linear features for robust classification. This depicts the
power of deep neural networks in modeling complex and non-linear features for robust classification. Other methods,
such as ensemble CNNs and other pipelines with some form of preprocessing such as color normalization, have reported
accuracies higher than 98%, thus suggesting that architecture and data augmentation play an important role in
performance. Support vector machines, while showing less prowess than deep networks, have obtained competitive
results with small, high-dimensional data sets, thus emphasizing their use when labeled training data and computational
resources are scarce. Despite all these promising results, several challenges exist. Most models were validated in region-
specific or handcrafted datasets, diminishing their generalizability to actual field conditions where noises, variations, and
occlusions exist. Other limitations include class imbalances, absence of per-class performance metrics, and
computational overheads that preclude wide deployment. Lightweight architectures, including MobileNetV3, would have
given promising mobile-ready detections but showed poor robustness under domain shifts in field images. Comparative
findings overall indicate that deep neural networks stand out with better accuracy and adaptability in comparison to
traditional methods, yet pragmatic deployment calls for a scrutiny into the scarcer datasets, interpretability of models, and
scalability. Future undertakings should stress a possible hybrid model, cross-site validation, and the constitution of
heterogeneous benchmark dataset to ensure field-level systems. Such a balance would consolidate precision agriculture
towards the sustainable cultivation of mangoes and a firm grip on their diseases.
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